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Abstract. We have located putative global minima for all lead clusters with up to 160 atoms using a glue
potential to model the interatomic interactions. The lowest-energy structures are not face-centred cubic,
as suggested previously. Rather, for N < 40 the majority of structures are decahedral or hexagonal close-
packed, and beyond this size the structures do not correspond to any of the structural forms commonly
found in clusters. However, these latter clusters are not simply disordered. High symmetry, magic number
clusters are still present, the most prominent of which is the 148-atom D3d hexagonal barrel. We relate
these structural preferences back to the form of the interactions.

PACS. 61.46.+w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals –
36.40.Mr Spectroscopy and geometrical structure of clusters

1 Introduction

The structure of a cluster is one of its primary properties
and one which has been intensely studied, experimentally
and theoretically [1,2]. However, there is still much to be
learnt about the fundamentals of cluster structure and the
possible structures that can be formed. For atomic clus-
ters with pair interactions, it is relatively well-understood
how the form of the potential determines the observed
structure. For example, the effects of the width of the
potential well [3,4] and oscillations in the potential [5–7]
have been systematically studied. However, for the sys-
tems that are of most interest, the interatomic interactions
are usually much more complex. In particular, metal clus-
ters, which are of great technological relevance [8], have a
strong many-body character to their bonding.

This presents a number of challenges to our under-
standing of cluster structure in metals. First, there is the
possibility that new types of structure could emerge as
a result of many-body effects. Although, the structural
types observed for pair potentials are also frequently ob-
served for metals, e.g. the competition between icosa-
hedral, decahedral and close-packed structures is also
common for metals [9], there are an increasing number of
intriguing exceptions. One seemingly common feature for
small metal clusters is to exhibit structures with no dis-
cernible overall order [10–14]. However, it might be that
the disorder is a result of new structural principles that
cannot be fully satisfied at the sizes considered (hence the
disorder), but which could lead to novel high symmetry
structures at certain magic sizes [15]. Indeed, there are
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general grounds to expect high symmetry structures to
emerge irrespective of the potential [16]. Studies that just
reoptimize known cluster structures will of course miss
such new features, and so it is important that efficient
global optimization algorithms are used.

Secondly, the many-body character makes it increas-
ingly difficult to relate the observed structure back to the
interactions, even when the assumed form for the many-
body potential is relatively simple. There has been some
interesting progress recently in this area, namely into the
causes of the disordered structures [17], and the effect of
the range of the attraction and repulsion on the compe-
tition between icosahedral, decahedral and close-packed
clusters [18], but there is much still to be discovered.
This task is particularly important because of the diffi-
culty in producing good empirical metal potentials (it is
not feasible to study the sizes in which we are interested
in any other way). One needs this kind of physical in-
sight to understand the strengths and deficiencies of a po-
tential and how it could be improved. It would also help
one to discriminate between different potentials that pur-
port to model the same material but give rise to different
structures.

Lead clusters illustrate some of these challenges. The
first theoretical study on large clusters by Lim et al. using
a glue potential seemed to indicate that the most stable
clusters at relatively small sizes (from at least N ∼ 55)
are face-centred cubic (fcc) [19], the preferred bulk struc-
ture [20]. This conclusion was based on a comparison
of the energies of a series of Mackay icosahedra and fcc
cuboctahedra. It is quite unusual to see bulk structures
already being favoured at such small sizes, but this find-
ing was rationalized on the basis of the particularly small
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value of γ, the ratio of the surface energies of the {100}
and {111} faces [19]. Usually, the Mackay icosahedra have
an energetic advantage at small sizes, because exclusively
having {111} facets gives them an appreciably lower sur-
face energy. Furthermore, these results were not inconsis-
tent with the experiments in the literature at that time,
which were mass spectroscopic studies on very small lead
clusters [21,22], and electron diffraction experiments on
very large clusters, which were identified as fcc, but with
possibly some vestiges of amorphous structure [23].

This basic picture though has recently been challenged
by both experimental [24] and theoretical [25] results.
Electron diffraction of clusters from 3 to 7 nm indicates
that the largest clusters are dominated by decahedra, but
for the smaller clusters it was not possible to obtain an
adequate fit to the diffraction pattern, suggesting that al-
ternative structural models need to be considered [24].

Simulations of the melting and freezing of large lead
clusters (modelled by the glue potential used by Lim
et al. [19]) unexpectedly revealed that for a certain size
range (600 < N < 4 000, at least) fcc structures are not
lowest in energy [25]. Instead, a new type of icosahedral
structure, which is more stable than the fcc structures,
spontaneously formed both on freezing and on heating at
temperatures just below that for melting. Similar struc-
tures had been previously seen in some simulations of large
lead clusters but it was not recognised that they could be
lowest in energy [26]. They resemble anti-Mackay icosahe-
dra [27], which have a Mackay icosahedral core but with
most of the outer layer in “hexagonal close-packed” (hcp)
surface sites rather than the “fcc” sites that would con-
tinue the packing in the Mackay icosahedra.

These results naturally raise intriguing questions
about the structures of small lead clusters. What alter-
native structural models might be needed to understand
the experimental results? Do lead clusters, as modelled
by the glue potential, really favour fcc structures at small
sizes? Lim et al. clearly showed that other standard forms
were not lower in energy, so the structures would have to
be somewhat unusual. Interestingly, a simple analysis us-
ing macroscopic properties as inputs suggested that lead
would be a particular likely candidate for disordered clus-
ters to be low in energy [17].

Here, we address some of these issues by performing
global optimization for lead clusters with up to 160 atoms.
We pay particular attention to characterizing the struc-
tures of these clusters and to understanding why the po-
tential favours the lowest-energy structures.

2 Methods

To model the lead clusters we use a glue potential [28] of
the form

E =
∑

i<j

φ (rij) +
∑

i

U (ni) , (1)

where φ(r) is a short-ranged pair potential, U(n) is
a many-body glue function and ni is a “generalized

Fig. 1. The three functions that make up the lead glue po-
tential: (a) φ(r), ρ(r) and (b) U(n). The pair distances and ni

values in the 13-atom decahedron are also plotted as impulses,
with the heights proportional to the number that take that
value.

coordination number” for atom i. ni is defined as

ni =
∑

j

ρ (rij) , (2)

where ρ(r) is an “atomic density” function. These three
functions have been fitted for lead using a variety of bulk
and surface properties [19]. The use of surface energies is
particularly important for the application of this potential
to model clusters. As well as clusters, this potential has
been also used to model the surface reconstructions and
pre-melting of low-index lead surfaces [29,30], and lead
nanowires [31,32].

The choice of this empirical potential is motivated by
the need for computational efficiency in order that global
optimization is feasible for the sizes we consider here, and
by our intention to compare with previous results. The use
of ab initio electronic structure methods for lead is pro-
hibitively expensive, especially as relativistic effects would
need to be included to obtain reasonable results [20]. For
example, sophisticated density functional calculations are
unable to reproduce the experimental surface energies and
anisotropies [33,34].

The functions U(n), φ(r) and ρ(r) are displayed in
Figure 1. The pair potential has a very shallow well and
so most of the binding energy comes from the glue term.
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The glue term has been chosen to have its minimum at
n = 12, consistent with the designation of n as an ef-
fective coordination number. The form of ρ(r) is particu-
larly significant. As ρ(r) decreases relatively slowly with
increasing r beyond the minimum in the pair potential,
next-nearest neighbours make a significant contribution
to n. Therefore, the difference in surface energies between
the {111} and {100} faces is small because, although
an atom on a {100} face has fewer nearest neighbours,
it has more next-nearest neighbours [19]. However, ρ(r)
then decreases relatively rapidly to zero at the cutoff at
r = 5.503 Å, which typically occurs between the second
and third neighbour shells.

For a pair potential the pair distances are the most
important quantities. For example, the lowest-energy
structure of a cluster involves a balance between max-
imization of the number of nearest neighbours, whilst
minimizing the strain energy that results from nearest-
neighbour pair distances deviating from the equilibrium
pair value, req [3]. However, for a glue potential, such as
the current one, where the main contribution to the energy
is from the glue function, the most important quantities
are the ni. Indeed, one of the key factors in generating
a low-energy structure is to have the ni values as close
as possible to neq, the value of n at the minimum of U .
This can potentially lead to different ordering principles
than for pair potentials. Only structures that have their
nearest-neighbour pair distances close to req are generally
competitive for pair potentials. However, this constraint
is relaxed for glue potentials, and particularly when, as in
the current case, ρ(r) initially falls off weakly with r.

For the atoms on the surface of a cluster ni < neq.
Therefore, there will be a driving force for contraction
of the surface to make the pair distances for the surface
atoms smaller and hence their ni larger. At equilibrium
the surface contraction will be balanced by the increase
in energy due to the resulting compression of the cluster
core.

These considerations represent a particular problem
for some of the usual forms for atomic clusters, such as the
Mackay icosahedra and to a lesser extent decahedra. The
inherent strain in these clusters results in pair distances
between surface atoms that are longer than req, and so the
compression needed to increase ni for the surface atoms is
particularly large. Therefore, these traditional structural
forms are expected to become increasingly disfavoured by
potentials for which the pair separation depends strongly
on coordination number [17]. Instead, novel forms that
are able to obtain large ni values for the surface atoms,
whilst not having too large an energetic penalty for com-
pression of the cluster interior, could potentially be lowest
in energy.

The global optimization of the lead clusters was per-
formed using the basin-hopping [35,36] (or Monte Carlo
minimization [37]) approach. This method has proved par-
ticularly successful in locating putative global minima for
a wide variety of cluster systems [38]. The optimization
task becomes rapidly more difficult with increasing N (e.g.
the number of minima on the potential energy surface is

Fig. 2. Energies of the putative global minima relative to Eave,
a four-parameter fit to these energies. Eave = −2.0251N +
1.6608N2/3 + 1.3662N1/3 − 0.8634.

thought to scale exponentially with N [39–41]) and so,
of course, the possibility that we have not been able to
obtain the true global minimum increases. However, the
structural principles and trends are clear from our results.

3 Structures of the global minima

The energies and point groups for the putative global min-
ima are given in Table 1. Point files will be made available
online at the Cambridge Cluster Database [38]. The ener-
gies of the global minima are represented in Figure 2 in
such a way that makes particularly stable clusters stand
out. All clusters in the range 9 ≤ N ≤ 40 are depicted
in Figure 3 and a selection of particularly stable larger
clusters in Figure 4.

First, we will look at the global minima for N ≤ 40 in
detail, before surveying more briefly the results for larger
clusters. For N ≤ 8 the clusters exhibit the same struc-
tures as typically seen for pair potentials. However, Pb9

has a somewhat unusual form that can be described as two
face-sharing octahedra, and so, as with Pb10, is the begin-
ning of an hcp cluster. Then for N = 11 and 12 more open
structures with three-fold axes of symmetry are preferred.

Most of the global minima for 13 ≤ N ≤ 33 are dec-
ahedral in origin. However, the growth sequence is not
straightforward. The decahedra are generally asymmetric
with the quasi-fivefold axis not passing through the cen-
tre of mass. So, although the growth sequence begins by
adding atoms around the equator of the 13-atom Ino dec-
ahedron [42], before this shell is completed, asymmetric
decahedra with a longer quasi-fivefold axis become lower
in energy, starting at N = 21. Furthermore, sometimes
part of the structure is distorted away from the ideal dec-
ahedral positions, e.g. at N = 18, 19, 26 and 32. There
are also structures with two interpenetrating (Pb20) and
face-sharing (Pb24) 13-atom decahedra, the latter with
two additional shared capping atoms. It is noticeable that
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Table 1. Energies and point groups (PG) of the putative global minima.

N PG Energy/eV N PG Energy/eV N PG Energy/eV N PG Energy/eV

3 D3h –1.380851 43 Cs –62.518056 83 C1 –131.453946 123 C2 –201.844885

4 Td –2.558548 44 Cs –64.158589 84 D2 –133.335862 124 C2 –203.652142

5 D3h –3.711742 45 Cs –65.887013 85 C1 –134.977705 125 C1 –205.483134

6 Oh –5.214277 46 C1 –67.545017 86 C2 –136.725287 126 C1 –207.149663

7 D5h –6.342793 47 C1 –69.227454 87 C1 –138.426910 127 C1 –208.901679

8 C2v –7.665775 48 C1 –70.926964 88 C1 –140.139735 128 C1 –210.764087

9 D3h –8.962242 49 C2 –72.624639 89 C2v –141.978803 129 C1 –212.620619

10 C2v –10.328111 50 C1 –74.303601 90 Cs –143.728686 130 C1 –214.378335

11 C3v –11.771970 51 C1 –75.989247 91 C2v –145.469445 131 C1 –216.125616

12 D3h –13.351511 52 C1 –77.748769 92 C1 –147.190877 132 C1 –217.911017

13 D5h –15.060197 53 C1 –79.529727 93 C1 –149.017327 133 C1 –219.726303

14 C2v –16.488673 54 S10 –81.438379 94 C2v –150.933479 134 C1 –221.493988

15 C2v –17.971698 55 C1 –83.050627 95 C2v –152.722173 135 C1 –223.228659

16 C2v –19.359118 56 C1 –84.670414 96 Cs –154.419817 136 C1 –225.006412

17 C3v –20.892141 57 C1 –86.343451 97 C1 –156.124859 137 C1 –226.856548

18 C1 –22.441282 58 C1 –88.160853 98 C1 –157.827739 138 C2 –228.680493

19 C2v –24.029140 59 C1 –89.961499 99 C1 –159.582628 139 C1 –230.562421

20 C2v –25.554526 60 C1 –91.725507 100 C1 –161.288978 140 C1 –232.461447

21 C2v –27.160557 61 C1 –93.369916 101 C1 –163.018692 141 C1 –234.347193

22 C1 –28.700367 62 C1 –95.068322 102 C1 –164.713475 142 C1 –236.226662

23 C2v –30.342369 63 C1 –96.835577 103 C1 –166.412388 143 C1 –238.007461

24 D2h –31.834411 64 C2 –98.559680 104 C1 –168.225729 144 C2 –239.879381

25 C2v –33.394629 65 C2 –100.391525 105 C1 –170.097176 145 Cs –241.772812

26 Cs –34.947504 66 S4 –102.045664 106 C1 –171.848423 146 C2 –243.665845

27 C2v –36.526823 67 C1 –103.803493 107 Cs –173.738048 147 Cs –245.558654

28 C1 –38.036722 68 C1 –105.470725 108 C2v –175.653403 148 D3d –247.451751

29 Cs –39.653184 69 C1 –107.136603 109 C2v –177.373836 149 C1 –249.175286

30 Cs –41.291166 70 C1 –108.921031 110 Cs –179.073251 150 Cs –250.900806

31 C2v –42.914946 71 C2 –110.659704 111 C2v –180.771206 151 C1 –252.632151

32 C2v –44.475555 72 C1 –112.360587 112 Cs –182.477331 152 C2 –254.384256

33 C1 –46.064990 73 C1 –114.048803 113 Cs –184.174089 153 C1 –256.115829

34 C1 –47.687973 74 C1 –115.771829 114 C2 –185.939956 154 C2 –257.846941

35 Cs –49.363201 75 C1 –117.552036 115 C1 –187.649103 155 C1 –259.573483

36 D3d –51.115236 76 C2 –119.429639 116 C1 –189.351898 156 C2 –261.299215

37 C3v –52.716480 77 C1 –121.236712 117 C1 –191.105099 157 C1 –263.019401

38 D3d –54.314542 78 C2 –123.043586 118 C1 –192.855140 158 C2 –264.738883

39 C1 –55.857448 79 C2 –124.684422 119 C1 –194.607282 159 C1 –266.456122

40 C2 –57.474215 80 C1 –126.364903 120 C1 –196.361528 160 C1 –268.174733

41 Cs –59.130894 81 C1 –128.007123 121 C1 –198.211397

42 Cs –60.803249 82 D3 –129.829950 122 C1 –200.012938

the decahedral global minima generally have a significant
proportion of surface atoms in {100}-type environments.
This feature reflects the small energy difference between
fcc {111} and {100} faces noted earlier. For materials that
more strongly favour {111} faces, the most stable deca-
hedral form is usually a Marks decahedron [43], because
this structure maximizes the proportion of {111} faces,
whilst retaining a relatively spherical shape. However, for
lead the most stable decahedral clusters occur at N = 13
and 23 (Fig. 2).

The other set of ordered global minima found for
N ≤ 40 are the hcp clusters at N = 35–38. Again, these
structures are somewhat unexpected, particularly as the
fcc truncated octahedron is possible at N = 38, but this
is further evidence of a preference for structures with a
significant proportion of {100}-like faces.

Of the other global minima for N ≤ 40, Pb17 is re-
lated to the 11-atom global minimum, but it is hard to
discern any overall order for those at N = 28, 29 and
34. Pb39 and Pb40 are somewhat related to the preceding
hcp structures, as is clear from the viewpoint chosen for
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Fig. 3. The global minima for N ≤ 40. Each cluster is labelled by the value of N .

Fig. 4. A selection of particularly stable global minima for N > 40. Each cluster is labelled by the value of N . For most of the
clusters two perpendicular views of the structure are given.

Figure 3, but again there is little order apparent on the
other side of the cluster.

Beyond N = 38 none of the global minima that we
have located can be assigned to any of the usual structural
forms. However, it would be too simplistic just to charac-
terize the clusters as disordered. From Table 1 we can see
that high symmetry structures are still present. Further-
more, if the clusters were just disordered one would ex-
pect cluster properties to evolve fairly smoothly with size.
However, it is clear from Figure 2 that there are “magic
number” clusters that are particularly low in energy. Un-
surprisingly, these magic numbers often correspond to the
high symmetry clusters.

Although most of the clusters in this size range have no
discernible overall order, there are common local surface
motifs that are repeatedly visible. However, only at a rel-
atively few sizes can these local preferences be assembled
into a structure that has clear overall order.

As for the smaller clusters the surface structures of
the global minima for N > 40 reflect the particularly low
value of γ. However, this does not lead to structures with
large {100} faces, but rather to many surface atoms with
{100}-like environments. The surfaces are typically cov-
ered with a patchwork of squares and triangles. So on the
flat regions of the surface it is common to see atoms sur-
rounded by three triangles and two squares (there are two
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Table 2. The contributions to the energy for a series of 55-atom structures, namely the global minimum (C1), the fcc
cuboctahedron (Oh), the Ino decahedron (D5h) and the Mackay icosahedron (Ih). The structures are denoted by their point
group (PG). 〈Ebulk

i 〉 and 〈Esurf
i 〉 are the average atomic energies for atoms in the interior of the cluster and on the surface,

respectively. All the energies are measured in eV.

PG Energy Epair nnn Estrain Eglue 〈ni〉 〈Ebulk
i 〉 〈Esurf

i 〉
C1 –83.051 –1.796 216 4.684 –81.254 9.072 –1.885 –1.405

Oh –82.559 –4.338 216 2.142 –78.220 8.783 –1.956 –1.360

D5h –82.438 –4.248 219 2.322 –78.190 8.800 –1.933 –1.365

Ih –81.295 –5.944 234 1.076 –75.351 8.500 –1.946 –1.333

ways this can be achieved), rather than the six triangles or
four squares, that are typical of {111} and {100} surfaces,
respectively.

Pb54 is somewhat related to the Mackay icosahedron.
It has a 12-atom uncentred icosahedron at its centre and
a clear five-fold axis of symmetry. Along this axis it looks
similar to the the D5h structure that was found by Wolf
and Landman as a low-energy isomer of the 55-atom
Lennard-Jones clusters [44], and which is related to the
icosahedron by a single rearrangement in which the struc-
ture is twisted around a five-fold axis. However, there is
a canted arrangement of squares and triangles around the
equator of the cluster.

The axial configuration of Pb54 seems to be quite a
common motif, and similar patterns can be seen in one of
the chosen views for N = 60, 78, 95 and 148, the last based
on a six-fold rather than a five-fold symmetric version of
the pattern, thus making the top surface flat, rather than
pyramidal. As the size of these clusters increases the pat-
tern is, of course, extended outwards. The resulting mo-
tif is clearest for the highly symmetric, 148-atom global
minimum.

Pb148 is the most prominent magic number in this size
range (Fig. 2). In shape, the cluster is a hexagonal barrel.
Although the outer surface has a clear sixfold symmetry,
this is in fact broken by the octahedron at the centre of
the cluster.

4 Relationship between structure
and potential

As flagged in the introduction, an important aim of this
paper is not only to characterize the global minima for
this lead potential, but to understand how the observed
structures relate back to the form of the potential. We
start by examining the decahedral 13-atom global mini-
mum, for which the rij and ni values have been included
in Figure 1. It is noticeable that there is a significant dis-
persion of nearest-neighbour distances. In fact the longest
distance is 11.7% longer than the shortest, which com-
pares to a 2.3% difference for the same structure when
optimized for the Lennard-Jones potential. As expected
from the discussion in Section 2, the structure distorts
to move the ni values as close to neq as possible, rather
than keeping the nearest-neighbour distances near to the

minimum of the pair potential. This is achieved by an ex-
pansion along the fivefold axis and a contraction of the
equator of the cluster. This reduces the ni values for the
two vertex atoms on the fivefold axis, but increases the ni

values for the other ten surface atoms, while maintaining
the ni value for the central atom close to neq. A simi-
lar anisotropy of the pair distances has previously been
noted by Lim et al. in their analysis of the lead cuboc-
tahedra [19]; there is a greater contraction for the {100}
faces of the cuboctahedra than the {111} faces because
of the enhanced contribution to ni from next neighbours
across the diagonals of the squares on the {100} faces.

To understand why novel structural forms are observed
for this lead potential, we take Pb55 as an example and
compare the contributions to the energy from a series of
competing structures (Tab. 2 and Fig. 5). The global min-
imum is based on the 54-atom structure illustrated in Fig-
ure 4 but with an additional surface atom. Also possible
at this size are a fcc cuboctahedron, an Ino decahedron
and a Mackay icosahedron.

In Table 2 we have decomposed the pair energy into
two components:

Epair = −nnnε + Estrain, (3)

where nnn is the number of nearest neighbours, ε is
the depth of the pair potential, and Estrain is the ener-
getic penalty for nearest-neighbour distances that deviate
from req, the distance corresponding to the minimum of
the pair potential. For this potential the contribution from
next-nearest neighbours is zero, because of the position of
the cutoff in the potential (Fig. 1a). More formally,

Estrain =
∑

i<j,rij<r0

ε − φ(rij), (4)

where r0 is a distance criterion that distinguishes nearest
from next-nearest neighbours. For all the structures we
consider, there is a clear separation between these coordi-
nation shells.

As expected the pair energy only contributes a small
fraction of the total energy. It is also noticeable that Estrain

is of similar magnitude to Epair. This is in marked contrast
to what occurs for pair potentials, where minimization of
the strain energy is a key element of a structure’s stability.
Estrain for the global minimum is particularly large.

Although the pair energy is small in magnitude, it is
structure sensitive and so it can still determine the rel-
ative stabilities of structures when the energies from the
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Fig. 5. A comparison of the properties of the 55-atom global
minimum (gmin) to the fcc cuboctahedron (Oh), the Ino deca-
hedron (D5h) and the Mackay icosahedron (Ih), the same four
clusters as in Table 2. (a) The atomic energies, Ei, for each
atom in the cluster. The atoms have been ranked by their dis-
tance from the centre of mass, with atom 1 being the closest
to the centre. (b) 〈ni(rij < r)〉. (c) npairs(r).

glue term, Eglue, are similar. For example, the major com-
ponent of the difference in energy between the 55-atom
cuboctahedron and decahedron is the greater pair energy
of the cuboctahedron.

It is clear from Table 2 that the global minimum’s
stability is a result of its significantly lower glue energy,
which is a result of the atoms being able to achieve ni

values that are closer to the ideal value, neq. However,

this lower glue energy is partially offset by the higher pair
energy resulting from the distortion of the pair distances
that is necessary to achieve an increase in ni.

If we look at the atomic contributions to the energy
(Tab. 2 and Fig. 5a) it is clear that the lower energy re-
sults from a lower average energy for the surface atoms
(particularly atoms 13–33 in Fig. 5a), which outweighs
the somewhat less favourable energies for the atoms in
the interior of the cluster.

It is also interesting to understand what structural fea-
tures of the global minimum lead to the larger value of
〈ni〉. We analyse this in Figures 5b and 5c, first by look-
ing at the cumulative contribution to 〈ni〉 from pairs with
distances less than r:

〈ni(rij < r)〉 =
1
N

∑

i�=j,rij<r

ρ(rij). (5)

It is particularly interesting to note that 〈n<
i (r)〉 for the

global minimum only becomes largest beyond 4.926 Å.
Therefore, although the contribution to 〈ni〉 from dis-
tances beyond this distance is small in magnitude, it is
key in stabilizing the global minimum relative to the more
conventional forms.

We can analyse this further by considering npairs(r),
the number of pairs of atoms that are separated by less
than r. It can be seen from Figure 5c that the number of
pair distances within the radius of the cutoff distance for
ρ is significantly larger for the global minimum than for
the competing structures, which in turn correlates with
the larger value of 〈ni〉. However, this is only true be-
cause the cutoff is located between the second and third
coordination shell. The cuboctahedron, decahedron and
icosahedron all have a relatively narrow distribution of
nearest-neighbour distances, which leads to a clear dis-
tinction between the second and third coordination shell.
By contrast, the global minimum has a much more dis-
perse nearest-neighbour shell and hence there is no clear
distinction between a second and third neighbour shell.
Instead, there is a steady increase in npairs(r) beyond the
start of the second neighbour shell.

Although the above analysis has been presented for a
single cluster, repeating this procedure for other sizes has
confirmed the generality of the conclusions.

5 Conclusions

We have shown by locating the global minima for small
lead clusters interacting with a many-body potential of
the glue form that, contrary to the original conclusion of
Lim et al., these clusters do not adopt fcc geometries for
N ≤ 160. Instead, they form a series of novel structures
that are a consequence of the many-body character of the
potential. These results naturally lead one to wonder at
what size bulk-like fcc structures will develop. To help us
answer this question we have plotted in Figure 6 the en-
ergies of the global minima, alongside those for a number
of sequences of high-symmetry structures and the novel
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Fig. 6. A comparison of the energies of the global min-
ima and the new icosahedra discovered by Hendy [25,45],
to series of high-symmetric structures, which include Mackay
and anti-Mackay icosahedra, cuboctahedra, truncated octahe-
dra (with regular hexagonal {111} faces), Ino decahedra and
Marks decahedra. The energies are measured with respect to
Ecuboct = −2.0284N + 1.7929N2/3 + 0.9714N1/3 − 0.6342.

icosahedral forms that Hendy obtained by simulations of
freezing [25] and by construction [45].

The figure confirms that the icosahedra and decahe-
dra are always higher in energy than the best fcc struc-
tures (except at the smaller sizes considered in the last sec-
tion) and that the fcc truncated octahedra become slightly
lower in energy than the cuboctahedra [19,25]. More in-
terestingly, we can clearly see that both the global min-
ima we have found and the new icosahedra produced by
Hendy [25,45] are significantly lower in energy than the
best fcc clusters. Thus, extrapolations between these two
sizes ranges [46] suggest that fcc clusters might well not
be the lowest in energy for intermediate sizes, and hence
that fcc clusters are not lowest in energy until at least
N ∼ 15 000 [45]. This is a surprising result, for although
it is not uncommon to find small (N < 100) metal clusters
that do not exhibit any of the usual cluster structures, it
is unprecedented for this behaviour to persist up to such
large sizes.

The results are also relevant to the ongoing issue of dis-
ordered metal clusters. Like recent theoretical results for
gold [10–12], cadmium, zinc [14] and vanadium [13] many
of our global minima do not fit with the fcc, hcp, deca-
hedral and icosahedral structures that are often found for
close-packed materials. However, to call these lead clusters
disordered would be too strong because, although most of
the clusters for N > 40 have no overall structural order,
there are common local structural preferences which at
a few sizes result in highly symmetric ordered structures
that are particularly stable.

For pair potentials, clusters tend to retain a lattice
structure away from the magic numbers, because it is un-
favourable for the pair distances to deviate significantly
from the equilibrium value. For example, most small
Lennard-Jones clusters can be considered to be based
upon Mackay icosahedra, either with an incomplete outer

layer or covered by an ordered overlayer [47]. By contrast,
for metal clusters the many-body character of the bond-
ing can make it favourable to depart from or even aban-
don the lattice structure at sizes away from the magic
numbers, because the atoms can then (in the language of
the current potential) increase their effective coordination
numbers (ni’s). A structure with no overall order results.
Therefore, if one only examines a few cluster sizes the
presence of particularly stable ordered structures may be
missed.

From our analysis of the energetics of the competing
structural forms we have seen that the shape of ρ(r), in
particular the shoulder and the position of the cutoff, is
key to the stability of the novel structures that we find
to be lowest in energy. This dependence on the cutoff is
somewhat worrying both because it is a rather long-range
feature of the potential and because its position is not
physically motivated, but chosen more for computational
convenience. These results illustrate how sensitively clus-
ter structure depends on the potential; the correct deter-
mination of the relative energies of competing clusters is
a stringent test of any potential [48].

Our results also help us to understand the structures
exhibited by lead nanowires [32] modelled using the same
potential. Gülseren et al. were surprised at the appar-
ent contradiction between the non-fcc character of their
nanowires and the cluster results of Lim et al. [19], and so
suggested a number of reasons for the differing structural
tendencies. However, our results show that the non-fcc
character is common to both systems.

In this paper we have mainly focussed on the ener-
gies of the structures that we have considered. However,
it should be remembered that differences in entropy can
lead to changes in the equilibrium structure with temper-
ature [48–51] and that the kinetics of structural develop-
ment, be it through freezing [52–54] or growth [55–57],
can significantly affect the cluster structure that results.
Indeed, both of these effects may be required for a full
understanding of experimental results.
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